If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2+y=49
We move all terms to the left:
7y^2+y-(49)=0
a = 7; b = 1; c = -49;
Δ = b2-4ac
Δ = 12-4·7·(-49)
Δ = 1373
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1373}}{2*7}=\frac{-1-\sqrt{1373}}{14} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1373}}{2*7}=\frac{-1+\sqrt{1373}}{14} $
| 2x=0.5x | | x2/2=1/18 | | x22=1/18 | | x22=118 | | 2/3b+-2/3=-4/3 | | 2x2=x^2/3+15 | | 9(8a-1)=5(4a+6) | | 2x2=x2/3+15 | | 2x2=x23+15 | | 4x2+24=104–x2 | | (1/2)^d+(1/3)^d=1 | | 4a-6+5a+15=180 | | 3x2=50+x2 | | 2x+4x=22x-100 | | 31/4+4x=11/4 | | (5x+2)-(2x+1)=2x-4 | | x2/3=15 | | x23=15 | | x/6=-3/9 | | X+3x=15000 | | 3^(3x+2)=243 | | x+x+(0.5x)+(0.25x)+1=100 | | (x-5)/6-(x-1)/8=5 | | x/2-1/3=200 | | 3x-2/6=200 | | Z^2=6i+8 | | 5x-9x+2=7x-9x= | | y=3/7.2-13 | | 5x+8(2x9)=54 | | 5x-8(2x-9)=54 | | 3t^2+6t-40=0 | | 9*x*x-12*x+4=0 |